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Abstract. The well known Haldane map from spin chains into theO(3) nonlinear sigma model
is generalized to the case of spin ladders. This map allows us to explain the different qualitative
behaviour between even and odd ladders, in exactly the same way as it explains the difference
between integer and half-integer spin chains. Namely, for even ladders the topological term in
the sigma model action is absent, while for odd ladders theθ parameter, which multiplies the
topological term, is equal to 2πS, whereS is the spin of the ladder. Hence even ladders should
have a dynamically generated spin gap, while odd ladders with half-integer spin should stay
gapless and physically equivalent to a perturbedSU(2)1 Wess–Zumino–Witten model in the
infrared regime. We also derive some consequences from the dependence of the sigma model
coupling constant on the ladder Heisenberg couplings constants.

1. Introduction

One of the most studied field theories in two dimensions is the nonlinear sigma model.
From a particle physics point of view these models are ideal analogues of four-dimensional
quantum chromodynamics, since they display asymptotic freedom behaviour [1], dynamical
mass generation, and the existence of instantons [2]. In string theory the conformal invariant
sigma models are crucial for understanding the on-shell properties on the strings [3]. In
solid state physics theO(3) sigma model also plays an important role in understanding the
properties of spin systems in various dimensions. The map from spin chains into the sigma
model led Haldane to the celebrated gap of antiferromagnetic Heisenberg chains with integer
values of spin [4, 5]. The crucial parameter which controls the behaviour of the sigma model
is the angleθ that multiplies a topological term into the action and which, according to
the map, takes the valueθ = 2πS, whereS is the spin of the chain. Haldane’s prediction
followed from the fact that the sigma models withθ = 0(mod2π) are massive field theories
[6–8]. This map was deduced in the semiclassical limit whereS � 1, but there now is clear
experimental and theoretical evidence of the existence of the gap [9, 10]. For half-integer
values of the spin, the prediction, based on the gapless character of the spin-1

2 chain [11],
was that all these models should also be gapless. This has been confirmed by numerical
computations [12]. The sigma model atθ = π has also been proved to be massless [13].

Nowadays there is a better understanding of the sigma model atθ = π by means of
the powerful techniques of bosonization [14, 15] and conformal field theory, and also from
the factorized scattering theory [16, 17]. It has been shown that the low-energy physics of
the θ = π model is well described by theSU(2)1 Wess–Zumino–Witten (WZW) model
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[18, 19]. The asymptotically free theory in the ultraviolet region, which is described by two
goldstone modes, becomes aSU(2)1 WZW model in the infrared region [16]. This RG flow
satisfies the Zamolodchikovc-theorem [20]. An alternative description of the sigma model
for low energies is given by a marginal irrelevant perturbation of the WZW model by the
product of the two chiralSU(2) currents [18]. In this manner one can perform perturbative
calculations around the conformal point [21]. It is interesting to observe that there are no
relevant perturbations of theSU(2)1 WZW model, which explains why this conformal field
theory characterizes the universality class of a large variety of spin systems.

We shall show in this paper that the sigma model methods can be extended to spin
ladders, which will then allow us to consider certain questions arising in this subject.
Spin ladders are arrangements ofn` parallel spin chains with nearest-neighbour Heisenberg
couplings between the spins along and across the chains. These spin systems are
interpolating structures between one and two dimensions. The interest in spin ladders
increased enormously when experimentalists discovered materials such as(VO)2P2O7 [23]
and Srn−1Cun+1O2n [24], whose magnetic and electronic structure was analysed in [25].
Hence, from an experimental and theoretical point of view the spin ladders have become
a place to test different ideas concerning strongly correlated systems ([26] for a review on
the subject).

A central question in the study of spin ladders is their different qualitative behaviour
as a function of the number of legsn`. The main conjecture is that ladders with an even
number of legs have a finite spin gap and short distance correlations, while the odd ladders
have gapless spin excitations and power-law correlations. Many authors have contributed
to clarify this question and, despite some initial controversies, it is now clear that it must
be correct [27–35]. In this paper we shall give further support of this conjecture using
sigma model techniques, which will clearly show the topological nature of the mechanism
underlying the existence or absence of a spin gap in the ladder’s spectrum. Our proof is
an extension of Haldane’s result from the chain to the ladder. Indeed, we shall show that
the low-lying modes of the ladder are described by a sigma model with a value of the
angleθ equal to zero for the even chains and equal to 2πS for the odd ones. Hence, from
this result and the well known properties of the sigma model atθ = 0 andπ , we prove
the above conjecture. This kind of proof has been suggested in [34] on the basis of the
two-dimensional (2D) formulation of the sigma model due to Haldane, who showed the
absence of the topological term in the 2D Heisenberg antiferromagnet [36]. However, our
approach to the problem is not really 2D since we take into account the specific nature of
the ladders (i.e. objects in between 1D and 2D). This different treatment is made clear by
the nature of the sigma model variables that we use which are 1D fields.

In the case of odd ladders with half-integer spins there is an extension of the Lieb–
Mattis–Schultz theorem due to Affleck (the LMSA thorem) which states that in the infinite
length limit either the ground state is degenerate or else there are gapless excitations [37, 38].
Our results, together with those of [25, 29, 30, 32, 33] confirm that the last possibility is the
one realized by the spin ladders, the spin chain being the particular casen` = 1. The LMSA
theorem works under very general circumstances, which is a manifestation of the topological
nature of odd ladders and half-integer spins. To make this more transparent we shall consider
spin ladders with arbitrary values of the interchain and intrachain coupling constants. Our
results concerning the nature of the gap will be independent of the precise values taken
by these parameters. We want to mention here another topological interpretation of the
difference between even and odd ladders given in [29] in the framework of the RVB picture
[39]. According to [29] the even ladders are short-range RVB systems which have a gap
due to the confinement of topological defects, while the odd ladders are long-range RVB
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systems with no confinement and consequently no gap. It would be interesting to analyse
the relation between these two topological interpretations.

2. AF spin ladders: goldstone modes

The Hamiltonian of a spin ladder withn` legs of lengthN is given by

Hladder = Hleg +Hrung (1)

Hleg =
n∑̀
a=1

N∑
n=1

JaSa(n) · Sa(n+ 1)

Hrung =
n`−1∑
a=1

N∑
n=1

J ′
a,a+1Sa(n) · Sa+1(n)

whereSa(n) are spin-S matrices located in theath leg at the positionn = 1, . . . , N . We
consider periodic boundary conditions along the legs (Sa(n) = Sa(n + N)). The only
condition we shall impose on the coupling constantsJa andJ ′

a,a+1 is that they are positive,
which guarantees that theHladder possesses, in the classical limit (S → ∞), a minima given
by the antiferromagnetic vacuum solution,

Sclass
a (n) = (−1)a+nSz (2)

where z is the unit vector in the vertical direction. Solution (2) breaks theO(3)
rotational invariance of theHladder down to the subgroupO(2) of rotations around the
z-axis. Consequently there should appear two goldstone modes associated with the broken
generatorsSx andSy [5]. In the thermodynamic limit whereN → ∞, with n` kept fixed,
the spectrum of the Hamiltonian (1) becomes essentially 1D, despite its 2D origin, and
hence one expects that the quantum corrections will restore theO(3) symmetry, as happens
for the usual Heisenberg chain. Our strategy will then parallel the one used for the study
of spin chains. We shall only consider the massless degrees of freedom associated with the
two goldstone modes and later on we shall consider their interaction in the framework of
the sigma model. A direct way to find the goldstone modes, which are nothing but spin
waves, is through the linearized approximation of the equation of motion of the spins [40].

The evolution equation of the spin operators of the ladder are given by

dSa(n)

dt
= i [Hladder,Sa(n)] = −Sa(n)

× [
Ja (Sa(n+ 1)+ Sa(n− 1))+ J ′

a,a+1Sa+1(n)+ J ′
a,a−1Sa−1(n)

]
. (3)

This equation is valid for anya = 1, . . . , n` with the conveniumJ ′
0,1 = J ′

n`,n`+1 = 0 and
J ′
a,b = J ′

b,a. ExpandingSa(n) around the classical solution (2),

Sa(n) = Sclass
a (n)+ sa(n) (4)

one gets, in the linearized approximation,

dζa(n)

dt
= i(−1)a+n+1S

[
Ja(ζa(n+ 1)+ ζa(n− 1)+ 2ζa(n))+

∑
b

K+
a,bζb(n)

]
(5)

whereζa(n) = sxa (n) + isya (n) and the matrixK+
a,b together with a matrixK−

a,b, which we
shall use later on, are defined as follows:

K±
a,b =

{
J ′
a,a+1 + J ′

a,a−1 a = b

±J ′
a,b |a − b| = 1.

(6)
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The solution of equation (5) is given by plane waves,

ζa(n) = ei(ωt+kn)(ψa(k)+ (−1)a+n+1φa(k)). (7)

Introducing (7) into (5) one gets

ω

S
ψa(k) = 4 sin2 k

2
Jaφa(k)+

∑
b

K−
a,bφb(k) (8)

ω

S
φa(k) = 4 cos2

k

2
Jaψa(k)+

∑
b

K+
a,bψb(k).

These equations have massless and massive modes in the limitN → ∞ (periodicity along
the legs impliesk = 2πm/N ,m = 0, 1, . . . , N − 1). These modes can be obtained by
expandingω(k), ψa(k) andφa(k) in powers of the momentak. For the massless modes this
expansion reads

ω = vk +O(k3)

ψa(k) = kAa +O(k3) (9)

φa(k) = Ba + k2Ca +O(k4).

The equations for the coefficientsv,Aa, Ba andCa follow from (8),

0 =
∑
b

K−
a,bBb (10)

v

S
Ba =

∑
b

La,bAb (11)

v

S
Aa = JaBa +

∑
b

K−
a,bCb (12)

where we have introduced yet another matrixLa,b given by

La,b = 4Jaδa,b +K+
a,b (13)

which is going to play an important role in the construction. Notice thatLa.b is a positive
definite matrix.

The solution of equation (10) is uniquely given byBa = B ∀a. This result follows
from the observation thatK−

a,b is a generalized incidence matrix associated with a graph
consisting ofn` points labelled bya and links joining the pointsa andb wheneverJ ′

a,b is
non-null. Since the graph is connected (i.e.J ′

a,b is a non-singular matrix) there is a unique
vector satisfying equation (10). Connectedness of the graph simply means that the ladder
cannot be split into two or more subladders. This graph, together with its incidence matrix,
contains all the information concerning the rungs of the spin ladder relevant to our problem.

The solution of (11) is given by

Aa = v

S
B

∑
b

L−1
a,b (14)

where we have inverted the matrixL ( recall thatL is positive definite). To solve equation
(12) we proceed in two steps. First of all we sum over the indexa in (12) and use the fact
that

∑
a K

−
a,b = 0, to get rid of the term proportional toCa. This gives us an equation for

the spin wave velocityv, which, with the help of (14), can be written as,( v
S

)2
=

∑
a Ja∑

a,b L
−1
a,b

. (15)
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Both the numerator and the denominator of (15) are positive which yields a real value for
v/S.

The solution of (12) for the vectorCa constitutes in fact a one-parameter family of
solutions given byCa+xBa with x arbitrary. This freedom reflects the linearity of equations
(8). Multiplying the whole solution (7) by ak-dependent factor produces a term of the form
k2Ba in (9). The ‘transverse’ components ofCa can then be obtained by inverting theK−

matrix in the subspace orthogonal to its zero eigenvector.
Next we shall briefly consider the massive modes. The value of the gap1 = ω(k = 0)

can be simply obtained by settingk = 0 in (8),

1

S
ψa(0) =

∑
b

K−
a,bφb(0) (16)

1

S
φa(0) =

∑
b

La,bψb(0).

Hence combining both equations we find that(1/S)2 is given by the eigenvalues of the
matrixLK− or alternativelyK−L. One of these eigenvalues is zero and corresponds to the
massless mode studied above, and the others are all non-zero and positive corresponding to
the massive modes.

3. σ-model mapping

Let us recall how one maps the Heisenberg spin chain into the 1Dσ -model (we shall follow
[5] closely). The spin wave analysis shows that the spin operatorsS(n) have two smooth
centred components and momentak = 0 and k = π , which can be identified with the
total angular momental and the staggered fieldϕ, respectively. The relation between these
operators can be written as follows,

S(2n) = l(x)− Sϕ(x) (17)

S(2n+ 1) = l(x)+ Sϕ(x)

wherex = 2n + 1
2 is the midpoint coordinate of the block formed by the points 2n and

2n+ 1. Inverting equation (17) one gets

l(x) = (S(2n+ 1)+ S(2n)) /2 (18)

ϕ(x) = (S(2n+ 1)− S(2n)) /2S.

l andϕ satisfy the following commutation relations,

[li (x), lj (y)] = i
δx,y

2
εijklk(x)

[li (x), ϕj (y)] = i
δx,y

2
εijkϕk(x) (19)

[ϕi(x), ϕj (y)] = iδx,yε
ijklk(x)/2S2 → 0

which can be derived from theSU(2) algebra satisfied by the spin operatorsS(n). The
term δx,y/2 is the lattice version of Dirac’s delta functionδ(x − y). The factor two in the
denominator is simply the lattice spacing of the 2-block arrangement of the chain. The
fact thatS(n) are spin-S matrices satisfying the relationS2(n) = S(S + 1), implies two
additional equations forl andϕ, namely

ϕ2 = 1 − l2/S2 +O(1/S) → 1 (20)

l · ϕ = 0.



3304 G Sierra

Equations (19) and (20) are the standard relations satisfied by theσ -field ϕ and the angular
momental. Introducing equations (17) into the spin chain Heisenberg Hamiltonian one gets,
taking the continuum limit and eliminating higher derivatives terms, the standardσ -model
Hamiltonian,

Hσ = vσ

2

∫
dx

[
g

(
l2 − θ

4π
ϕ′

)2

+ 1

g
ϕ′2

]
(21)

whereϕ′ = ∂xϕ. The theta parameter, coupling constant and spin velocity take the following
values:

θ = 2πS g = 2

S
vσ = 2JS (n` = 1). (22)

The Hamiltonian (21) can be obtained from the 2Dσ -model Lagrangian:

L = 1

2g
∂µϕ · ∂µϕ + θ

8π
εµνϕ · (∂µϕ × ∂νϕ). (23)

It is our aim to generalize the previous construction to spin ladders. First of all we shall
divide the ladder into blocks of two consecutive rungs and defineσ -model variables for
each of them. The spin wave analysis of the previous section suggests the following ansatz,

Sa(2n) = Aal + la + S(−1)a(ϕ + ϕa) (24)

Sa(2n+ 1) = Aal + la + S(−1)a+1(ϕ + ϕa)

wherel andϕ are the candidates for theσ variables, andla andϕa are some extra slowly-
varying fields needed to match the number of degrees of freedom on both sides of (24). For
this to be the case we shall impose the following ‘transversality conditions’ onla andϕa,∑

a

la = 0
∑
a

ϕa = 0 (25)

which are only needed forn` > 1. Using (25) we can expressl andϕ in terms of the spin
operators as follows:

l(x) =
∑
a

[Sa(2n+ 1)+ Sa(2n)]

/(
2

∑
b

Ab

)
(26)

ϕ(x) =
∑
a

(−1)a+1 [Sa(2n+ 1)− Sa(2n)] / (2Sn`) .

We want l and ϕ to satisfy the algebraic relations (19), which can be achieved by
imposing ∑

a

Aa = 1 ⇒ Aa =
∑

b L
−1
a,b∑

c,d L
−1
c,d

(27)

where we have used equation (14). Similarlyl and ϕ as given by (26) satisfy equations
similar to (20),

ϕ2 = 1 + O(1/Sn`) l · ϕ = O(1/Sn`). (28)

Hence in the limitSn` � 1 we obtain the constraints which define theσ -model. From (28)
it seems that the expansion parameter that we are employing isSn` rather thanS. If this
is correct then considering higher spins is equivalent, from the sigma model point of view,
to considering ladders with many legs. We shall return later on to this suggestion. Another
point which is worth mentioning is thatl(x) andϕ(x) represent total angular momenta and
staggered magnetization of the rung taken as a whole. This is why they are 1D densities
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depending only on the single coordinatex. Given the relations (24) we can now write the
spin ladder Hamiltonian (1) in the variablesl, ϕ, la andϕa as follows:

Hladder =
∫

dx

2

{ ∑
a,b

La,b(AaAbl
2 + lalb)+ 2S2

∑
a

Ja(ϕ
′ + ϕ′

a)
2 +

∑
a,b

K−
a,bϕaϕb

+2S
∑
a

(−1)aJa[(Aal + la)(ϕ
′ + ϕ′

a)+ (ϕ′ + ϕ′
a)(Aal + la)]

}
. (29)

To derive (29) we have used (11), (25) and the following formula,

(Aal + la)
2 + S2(ϕ + ϕa)

2 = S(S + 1) (30)

(Aal + la)(ϕ + ϕa) = 0

which is a consequence of the relationsS2
a(n) = S(S + 1) (since we are working in the

semiclassical limitS � 1 we shall only keep the highest power inS). To decouple the
fieldsϕ andϕa in (29) we have to choose the same value ofJa for all the legs. Indeed, upon
this condition the cross term

∑
a Jaϕ

′ϕ′
a in (29) vanishes as a consequence of (25). We thus

obtain thatϕ is a massless field while the fieldsϕa are massive. Let us now concentrate on
the massless field, whose Hamiltonian reads

H
(massless)
ladder =

∫
dx

2

[( ∑
a,b

La,bAaAb

)
l2 + 2S2

∑
a

Jaϕ
2 + 2S

∑
a

(−1)aJaAa(lϕ
′ + ϕ′l)

]
.

(31)

This is precisely theσ -model Hamiltonian given in (21) with an appropiate identification
of θ, g andv. Let us first considerθ whose values are given by

θ = 8πS

∑
a(−1)a+1JaAa∑
b,c Lb,cAbAc

. (32)

A simplification of (32) is achieved using (27):

θ = 8πS
∑
a,b

(−1)a+1JaL
−1
a,b. (33)

A convenient way of writing (33) is by means of twon`-dimensional vectors|F 〉 and|AF 〉
defined as follows,

|F >= 1√
n`


1
1
...

1

 |AF 〈= 1√
n`


1

−1
...

(−1)n`+1

 (34)

whose scalar product is

〈AF |F 〉 =
{

0 n` : even

1/n` n` : odd.
(35)

Using (34) we write (33) in matrix notation as

θ = 8πSn`〈AF |JL−1|F 〉 (36)

where J is a diagonal matrix whose entries areJa. Recalling the well known operator
identity

1

A+ B
= 1

A
− 1

A
B

1

A+ B
(37)
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we transform (36) into

θ = 2πSn`

〈
AF

∣∣∣∣( − K+ 1

4J + K+

)∣∣∣∣F 〉
. (38)

Then noticing that the vector|AF 〉 is annihilated byK+ and using equation (35) we arrive
finally at

θ =
{

0 n` : even

2πS n` : odd.
(39)

Taking into account the fact thatθ is defined modulo 2π we can then write equation (39)
simply as

θ = 2πSn`. (40)

This result is valid for any value of the coupling constantsJa andJa,a+1 as long as they are
non-vanishing. This confirms the topological nature of the result in total agreement with the
LMSA theorem. Moreover, the derivation of (40) suggests that theθ term for spin ladders
is related to the transition amplitude from ferromagnetic to antiferromagnetic configurations
along the rungs (35). A path integral derivation of (40), along the lines of [36], would
probably throw some light on this interpretation.

Next we shall give the expressions of theσ -model coupling constantg and the velocity
vσ in terms of the ladder parameters,

g−1 = S

[
2

∑
a,b,c

JaL
−1
b,c − 1

4δn`

]1/2

(41)

(vσ
S

)2
= 2

∑
a Ja∑

b,c L
−1
b,c

− δn`
1(

2
∑

b,c L
−1
b,c

)2 (42)

whereδn` is equal to 1 (or 0) whenevern` is odd or even.
Compairing equations (42) and (15) forn` = 1 we find thatvσ = v, but for n` > 1 the

two velocities,vσ and v, do not coincide (forn` even, one hasvσ = √
2v). We interpret

this fact as a kind of interference effect between the legs of the ladder which makes the
effective spin velocityvσ differ from the spin wave velocityv. The most interesting case
for practical applications is whenJa = J and J ′

a,a+1 = J ′ ∀a. We shall give below the
values ofg andvσ in this situation:

g−1 = S

[
n2
`

2
f (n`, J

′/J )− 1

4
δn`

]1/2

(43)

vσ = 4J

n`gf (n`, J ′/J )
. (44)

The functionf (n`, J ′/J ) appearing in these formulae is defined as

f (n`, J
′/J ) = 〈F |(1 +K+/4J )−1|F 〉

= 1

n2
`

[
δn` + 2

∑
m=1,3,...,n`−1

(
sin

πm

2n`

)−2 (
1 + J ′

J
cos2

πm

2n`

)−1
]
.

(45)
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In the particular cases wheren` = 2 and 3 we obtain

for n` = 2


g = 1

S
√

2

(
1 + J ′

2J

)1/2

vσ = 2
√

2SJ

(
1 + J ′

2J

)1/2
(46)

for n` = 3


g = 2

S

(
1 + 3

4J
′/J

17+ 3
4J

′/J

)1/2

vσ = 2JS

3

[(
1 + 3

4J
′/J

) (
17+ 3

4J
′/J

)]1/2

1 + 1
12J

′/12J
.

(47)

We have assumed in (47) thatS is half-integer. From equation (43) we derive that
g(n`, J

′/J ) is a monotonically increasing function of the ratioJ ′/J , which implies that
the ladder is more disordered in the strong coupling regime than it is for weak coupling. In
fact we get

lim
J ′/J→∞

g =


∼ {

J ′/J
)1/2 → ∞ n` : even

2/S n` : odd, S : half integer√
2/S n` : odd, S : integer.

(48)

This equation shows that the difference between even and odd ladders appears not only
in the topological term but also in the behaviour ofg as a function of the ratioJ ′/J in
the strong coupling limit. Forn` even, the sigma model enters into the strong coupling
regimeg >> 1, which is dominated by the angular momentum terml2 in the sigma model
Hamiltonian (21). Let us suppose that we discretize the sigma model Hamiltonian atθ = 0
as in [6, 13],

Hσ = vσ

2

∑
n

[
gl2(n)− 2

g
ϕ(n) · ϕ(n+ 1)+ cte

]
(49)

with l(n) satisfying the standard angular momenta algebra such thatl2 has the spectrum
l(l + 1), l = 0, 1, . . .. l(n) gives the angular momenta of thenth rung of the ladder. Then
in the strong coupling limit the ground state of (49) is obtained choosing the representation
l = 0 for eachn. The first excited state hasl = 1 at one site and energygvσ , which is the
value of the gap in the limitg >> 1. In the casen` = 2 we get from equations (46)

vσg ' J ′ for J ′/J � 1. (50)

The second term in (49) produces shifts in the ground-state energy and also delocalizes
the l = 1 excitation producing a band of states. The gap only vanishes atg = 0. These
results agree with the ones obtained using very different techniques, namely numerical
[27, 28], renormalization group [29], mean field [30], finite size [33] and bosonization [35].
However, in order to claim full agreement we have also to analyse what happens with the
other massive modes that we discarded in the mapping of the ladder Hamiltonian into the
sigma model Hamiltonian. If the mass which is generated dynamically by non-perturbative
effects for the fieldϕ is smaller than the gap associated with the massive modesϕa then we
expect that the map must be essentially correct, except for a finite renormalization of the
coupling constantg and the spin velocityvσ . These issues will be considered elsewhere.

For the odd ladders the asymptotic value ofg is in agreement with (22), in the sense
that the odd ladders with spin-1

2 can be thought of as single chains with a spin-1
2 and an
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effective coupling constantJeff. Indeed, forS = 1
2 we get from (48) thatg = 4 which is

the same value we obtain in (22) for the single spin-1
2 chain.

Let us consider now the weak coupling limitJ ′/J � 1. From (43) and (45) we get

lim
J ′/J→0

g =


√

2/(Sn`) n` : even orn` : odd, S : integer

2

/(
S

√
2n2

` − 1

)
n` : odd, S : half integer

(51)

which implies thatg depends essentially on the combinationSn`, as we anticipated in the
discussion of equation (28). The isotropic case,J = J ′, is in fact closer to the weak
coupling values (51) than to the strong coupling ones (48). Thus forSn` � 1 the value
of g will be small and we may use the formula exp(−2π/g) to estimate the value of the
energy or mass scales of the system. This implies in particular that the mass gap for the
even ladders withn` large will decrease as exp(−cte n`). This agrees, at least qualitatively,
with the numerical results which give a spin gap1spin for the isotropic case equal to 0.504J
for n` = 2 and1spin ∼ 0.2J for n` = 4. Thus, in the limitn` → ∞, the gap of the even
ladders should vanish exponentially. As the odd ladders are already gapless for any number
of legs, one reaches in the limitn` the same result for both even and odd chains. However,
one must be careful in this limit since, as we mentioned above, the massive modes that
we discarded in our mapping to a 1D sigma model are becoming more important as we
increase the number of legs. A more careful analysis of these questions is needed.

4. Final considerations

The application of the sigma model techniques to spin ladders has allowed us not only
to confirm the topological origin of the qualitatively different behaviour of even and odd
ladders, but also to get some hints about the dependence of the physical quantities on the
values of the coupling constantsJ andJ ′. Much work remains to be done in this direction,
but we believe that the sigma model offers an unified, economic and consistent approach
to spin ladders. The connection we have established in this paper allows us, in principle,
to apply the knowledge accumulated in the past in the study of the sigma model to the
understanding of spin ladders.

An interesting ‘recent’ result concerning the sigma models atθ = π is the proof of
its exact integrability [16, 17], which is the parallel of the well known integrability of the
sigma model atθ = 0 [8]. The proof of integrability is performed in the framework of
the factorized scattering theory. Forθ = 0 theS-matrix is formulated for aO(3)-triplet of
massive particles, while forθ = π there are twoO(2)-doublets of left and right moving
massless particles, with three types of scatterings: left–left, right–right and left–right. Using
the powerful techniques of the thermodynamic Bethe ansatz one can compute finite size
effects of various observables. In this way one can prove that the RG flow forθ = π goes
from the UV asymptotically free model withc = 2 to the IR masslessSU(2)1WZW model
with c = 1, as we indicated in the introduction. The results one gets using these exact
techniques agree at the perturbative level with the ones obtained from the perturbation of
the WZW model by the marginal irrelevant operatorJLJR [19]. In this way one explains
the logarithmic departure from the scale invariant results which can then be compared with
experimental or numerical results [21]. These logarithmic corrections all depend on a mass
scale3, which is generated dynamically in the sigma model and which for small values
of g is given essentially by 1/a exp(−2π/g), with a the lattice spacing. In the factorized
S-matrix theory the parameter3 appears explicitly in the expression of the energy and



The nonlinear sigma model and spin ladders 3309

momentum of the particles. An important problem is to derive the relation between3 and
the microscopic parameters of the model appearing in the Hamiltonian, namelyn`, J and
J ′ [41]. If the Hamiltonian happens to be integrable then one should be able to find an
exact expression for3, but in general this will not be possible and so one has to use some
approximation method. Numerical computations of thermodynamics quantities of the spin
ladders and their comparison with the theoretical predictions may also be very useful in
establishing this connection [42].
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