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Abstract. The well known Haldane map from spin chains into thé3) nonlinear sigma model

is generalized to the case of spin ladders. This map allows us to explain the different qualitative
behaviour between even and odd ladders, in exactly the same way as it explains the difference
between integer and half-integer spin chains. Namely, for even ladders the topological term in
the sigma model action is absent, while for odd laddersotiparameter, which multiplies the
topological term, is equal tos2S, whereS is the spin of the ladder. Hence even ladders should
have a dynamically generated spin gap, while odd ladders with half-integer spin should stay
gapless and physically equivalent to a perturt$éd(2); Wess—Zumino-Witten model in the
infrared regime. We also derive some consequences from the dependence of the sigma model
coupling constant on the ladder Heisenberg couplings constants.

1. Introduction

One of the most studied field theories in two dimensions is the nonlinear sigma model.
From a particle physics point of view these models are ideal analogues of four-dimensional
guantum chromodynamics, since they display asymptotic freedom behaviour [1], dynamical
mass generation, and the existence of instantons [2]. In string theory the conformal invariant
sigma models are crucial for understanding the on-shell properties on the strings [3]. In
solid state physics thé (3) sigma model also plays an important role in understanding the
properties of spin systems in various dimensions. The map from spin chains into the sigma
model led Haldane to the celebrated gap of antiferromagnetic Heisenberg chains with integer
values of spin [4, 5]. The crucial parameter which controls the behaviour of the sigma model
is the angled that multiplies a topological term into the action and which, according to
the map, takes the value= 27 S, whereS is the spin of the chain. Haldane’s prediction
followed from the fact that the sigma models with= 0(mod2r) are massive field theories
[6-8]. This map was deduced in the semiclassical limit wtieye 1, but there now is clear
experimental and theoretical evidence of the existence of the gap [9, 10]. For half-integer
values of the spin, the prediction, based on the gapless character of th§ clpaiA [11],
was that all these models should also be gapless. This has been confirmed by numerical
computations [12]. The sigma modelét= 7 has also been proved to be massless [13].
Nowadays there is a better understanding of the sigma modkkatr by means of
the powerful techniques of bosonization [14, 15] and conformal field theory, and also from
the factorized scattering theory [16, 17]. It has been shown that the low-energy physics of
the & = 7 model is well described by th8U (2); Wess—Zumino-Witten (WZW) model
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[18,19]. The asymptotically free theory in the ultraviolet region, which is described by two
goldstone modes, becomes$ & (2); WZW model in the infrared region [16]. This RG flow
satisfies the Zamolodchikaxtheorem [20]. An alternative description of the sigma model
for low energies is given by a marginal irrelevant perturbation of the WZW model by the
product of the two chiraSU (2) currents [18]. In this manner one can perform perturbative
calculations around the conformal point [21]. It is interesting to observe that there are no
relevant perturbations of th&U (2); WZW model, which explains why this conformal field
theory characterizes the universality class of a large variety of spin systems.

We shall show in this paper that the sigma model methods can be extended to spin
ladders, which will then allow us to consider certain questions arising in this subject.
Spin ladders are arrangementsizgfparallel spin chains with nearest-neighbour Heisenberg
couplings between the spins along and across the chains. These spin systems are
interpolating structures between one and two dimensions. The interest in spin ladders
increased enormously when experimentalists discovered materials s@¢®p$,0; [23]
and Sj_;Cu,;10,, [24], whose magnetic and electronic structure was analysed in [25].
Hence, from an experimental and theoretical point of view the spin ladders have become
a place to test different ideas concerning strongly correlated systems ([26] for a review on
the subject).

A central question in the study of spin ladders is their different qualitative behaviour
as a function of the number of legs. The main conjecture is that ladders with an even
number of legs have a finite spin gap and short distance correlations, while the odd ladders
have gapless spin excitations and power-law correlations. Many authors have contributed
to clarify this question and, despite some initial controversies, it is now clear that it must
be correct [27-35]. In this paper we shall give further support of this conjecture using
sigma model techniques, which will clearly show the topological nature of the mechanism
underlying the existence or absence of a spin gap in the ladder’'s spectrum. Our proof is
an extension of Haldane's result from the chain to the ladder. Indeed, we shall show that
the low-lying modes of the ladder are described by a sigma model with a value of the
angled equal to zero for the even chains and equals#d 2or the odd ones. Hence, from
this result and the well known properties of the sigma model at 0 andx, we prove
the above conjecture. This kind of proof has been suggested in [34] on the basis of the
two-dimensional (2D) formulation of the sigma model due to Haldane, who showed the
absence of the topological term in the 2D Heisenberg antiferromagnet [36]. However, our
approach to the problem is not really 2D since we take into account the specific nature of
the ladders (i.e. objects in between 1D and 2D). This different treatment is made clear by
the nature of the sigma model variables that we use which are 1D fields.

In the case of odd ladders with half-integer spins there is an extension of the Lieb—
Mattis—Schultz theorem due to Affleck (the LMSA thorem) which states that in the infinite
length limit either the ground state is degenerate or else there are gapless excitations [37, 38].
Our results, together with those of [25, 29, 30, 32, 33] confirm that the last possibility is the
one realized by the spin ladders, the spin chain being the particulangcasd&. The LMSA
theorem works under very general circumstances, which is a manifestation of the topological
nature of odd ladders and half-integer spins. To make this more transparent we shall consider
spin ladders with arbitrary values of the interchain and intrachain coupling constants. Our
results concerning the nature of the gap will be independent of the precise values taken
by these parameters. We want to mention here another topological interpretation of the
difference between even and odd ladders given in [29] in the framework of the RVB picture
[39]. According to [29] the even ladders are short-range RVB systems which have a gap
due to the confinement of topological defects, while the odd ladders are long-range RVB
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systems with no confinement and consequently no gap. It would be interesting to analyse
the relation between these two topological interpretations.

2. AF spin ladders: goldstone modes

The Hamiltonian of a spin ladder with, legs of lengthN is given by

Hiadder= Hleg + Hrung (1)
Hleg = ”i i JaSa(n) : Sa(n + 1)
ot
Hrung = Z Z J;$a+1sa(n) + Sap1(n)
a=1 n=1
where S, (n) are spin-S matrices located in théh leg at the positiom = 1,..., N. We

consider periodic boundary conditions along the le§s(#) = S.(n + N)). The only

condition we shall impose on the coupling constaftandJ; , ., is that they are positive,
which guarantees that thié,qqer pOSSESSES, in the classical limft oo), a minima given

by the antiferromagnetic vacuum solution,

Sglass(n) — (_1)a+n Sz (2)

where z is the unit vector in the vertical direction. Solution (2) breaks Mhe€3)
rotational invariance of théH,qqer down to the subgroup) (2) of rotations around the
z-axis. Consequently there should appear two goldstone modes associated with the broken
generatorss® and SY [5]. In the thermodynamic limit wher&/ — oo, with n, kept fixed,
the spectrum of the Hamiltonian (1) becomes essentially 1D, despite its 2D origin, and
hence one expects that the quantum corrections will restor® (Besymmetry, as happens
for the usual Heisenberg chain. Our strategy will then parallel the one used for the study
of spin chains. We shall only consider the massless degrees of freedom associated with the
two goldstone modes and later on we shall consider their interaction in the framework of
the sigma model. A direct way to find the goldstone modes, which are nothing but spin
waves, is through the linearized approximation of the equation of motion of the spins [40].
The evolution equation of the spin operators of the ladder are given by

ds,(n .
dt( ) = i [Hiadder Sa(m)] = —Sa(n)
X [Ja (Sut + 1) + Su(n — 1) + J. 4 18ura@®) + Iy 1Sam]. (3)
This equation is valid for any = 1, ..., n, with the convenium/s;, = J, , ., =0 and
Jop = Jp .- ExpandingS,(n) around the classical solution (2),
Sa(n) = S5%n) + s4(n) (4)
one gets, in the linearized approximation,
d alnn H a+n
gdﬁ ) iy “S[Ja(;,(n + D+ L= D) +20,(m) + Y K;bch(m} (5)
b

where g, (n) = sX(n) + isy (n) and the matrixKa‘fb together with a matrixk, ,, which we
shall use later on, are defined as follows:
+ i Ja;,a+1 + Jz;,afl a=>b

- 6
@b +J, la —b| =1. ©
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The solution of equation (5) is given by plane waves,

La(n) = € (Y (k) + (=D, (K)). @
Introducing (7) into (5) one gets

ok
SVl = 4SiP 2 Jugu) + 3 Koyo(l) ®)
b

w k
SPak) =408 S Juva (k) + ; K}y (k).

These equations have massless and massive modes in th&/limitco (periodicity along
the legs impliesk = 2rm/N.m = 0,1,..., N — 1). These modes can be obtained by
expandingw (k), ¥, (k) andg, (k) in powers of the momenta For the massless modes this
expansion reads

w = vk + 0K

Ya(k) = kAq + O (K®) ©)

¢a(k) = By + K*Cq + O (k™).

The equations for the coefficients A,, B, andC, follow from (8),

0= K, ,Bs (10)
b

v

—B, =Y LuyA 11

S Xb: b AD (11)

v _

gAa=JaBa+ Xh: K. ,Cp (12)

where we have introduced yet another matkix, given by
La,b = 4Ja(sa,b + K;:h (13)

which is going to play an important role in the construction. Notice fhaf is a positive
definite matrix.
The solution of equation (10) is uniquely given B, = B Va. This result follows
from the observation thak,, is a generalized incidence matrix associated with a graph
consisting ofn, points labelled by: and links joining the pointa andb wheneverJ; , is
non-null. Since the graph is connected (i/g, is a non-singular matrix) there is a unique
vector satisfying equation (10). Connectedness of the graph simply means that the ladder
cannot be split into two or more subladders. This graph, together with its incidence matrix,
contains all the information concerning the rungs of the spin ladder relevant to our problem.
The solution of (11) is given by

v 1
As= (B ; L (14)

where we have inverted the matrix( recall thatL is positive definite). To solve equation
(12) we proceed in two steps. First of all we sum over the indéx (12) and use the fact
that)", K, , =0, to get rid of the term proportional t6,. This gives us an equation for
the spin wave velocity, which, with the help of (14), can be written as,

() = s (15)

_ — -
S Za,b La,b
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Both the numerator and the denominator of (15) are positive which yields a real value for
v/S.

The solution of (12) for the vecto€, constitutes in fact a one-parameter family of
solutions given byC, +x B, with x arbitrary. This freedom reflects the linearity of equations
(8). Multiplying the whole solution (7) by &-dependent factor produces a term of the form
k?B, in (9). The ‘transverse’ components 6f, can then be obtained by inverting tike"
matrix in the subspace orthogonal to its zero eigenvector.

Next we shall briefly consider the massive modes. The value of theAgapw (k = 0)
can be simply obtained by settirkig= 0 in (8),

A _
(Va0 = ; K, ,#(0) (16)

A
$9a0 =3 Las¥(0).
b

Hence combining both equations we find tiiat/S)? is given by the eigenvalues of the
matrix LK~ or alternativelyk ~L. One of these eigenvalues is zero and corresponds to the
massless mode studied above, and the others are all non-zero and positive corresponding to
the massive modes.

3. o-model mapping

Let us recall how one maps the Heisenberg spin chain into the-biddel (we shall follow
[5] closely). The spin wave analysis shows that the spin oper&ot$ have two smooth
centred components and momeiita= 0 andk = 7, which can be identified with the
total angular momenthand the staggered field, respectively. The relation between these
operators can be written as follows,

S(2n) = U(x) = Se(x) (17
S@2n+1) =1x) + Se(x)

wherex = 2n + % is the midpoint coordinate of the block formed by the pointsahd
2n + 1. Inverting equation (17) one gets

lx)y=@n+1)+82n)) /2 (18)
p(x) =(S@2n+1) — S(2n)) /2S.
I and ¢ satisfy the following commutation relations,

[l ). V()] = i%afkmx)

‘ : ey i

[0, ¢’ ] =157 7ot (x) (19)

[¢' (), ¢’ (N] = 18, €7 1" (x) /257 — 0
which can be derived from th8U (2) algebra satisfied by the spin operat&é:). The
termé, ,/2 is the lattice version of Dirac’s delta functi@ix — y). The factor two in the
denominator is simply the lattice spacing of the 2-block arrangement of the chain. The
fact that S(n) are spin§ matrices satisfying the relatiof2(n) = S(S + 1), implies two
additional equations fok and ¢, namely

?>=1-12/8’+0(1/S) » 1 (20)

l-¢p=0.
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Equations (19) and (20) are the standard relations satisfied by-tigdd ¢ and the angular
momentd. Introducing equations (17) into the spin chain Heisenberg Hamiltonian one gets,
taking the continuum limit and eliminating higher derivatives terms, the standanddel
Hamiltonian,

Vo 6 \?> 1
H, = —/ dr | g <l2 - s0/> + ~¢”? (21)
2 4 g

whereg’ = d,¢. The theta parameter, coupling constant and spin velocity take the following
values:

2
0=2r8 g:E vy, = 2JS (ng=1). (22)
The Hamiltonian (21) can be obtained from the 2Bmodel Lagrangian:
1 0 ..
L= ZE)Mgt) <00 + ge“ @ - (30 X de). (23)

It is our aim to generalize the previous construction to spin ladders. First of all we shall
divide the ladder into blocks of two consecutive rungs and defirmaodel variables for
each of them. The spin wave analysis of the previous section suggests the following ansatz,

Su(zn) = Aul + lu + S(—l)a(‘P + (pa) (24)
Su@n+1) = Ad+1, + SD) e + ¢0)
wherel andg are the candidates for the variables, and, andg, are some extra slowly-
varying fields needed to match the number of degrees of freedom on both sides of (24). For
this to be the case we shall impose the following ‘transversality condition$; @md ¢,,

Zla=o Z\pa:o (25)

a

which are only needed for, > 1. Using (25) we can expregsand¢ in terms of the spin
operators as follows:

Ix) =Y [Sa(@2n+1) + Su(2n)] / (22 A,,) (26)
a b

p(x) =Y (=D [Su(2n + 1) — Sa(@m)] / (2Sn) .
We wantl and ¢ to satisfy the algebraic relations (19), which can be achieved by
imposing

(27)

where we have used equation (14). Similakland ¢ as given by (26) satisfy equations
similar to (20),

@? =1+ 0(1/Sny) 1-¢=0(1/Sny). (28)

Hence in the limitSn, > 1 we obtain the constraints which define thenodel. From (28)

it seems that the expansion parameter that we are employisig, isather thanS. If this

is correct then considering higher spins is equivalent, from the sigma model point of view,
to considering ladders with many legs. We shall return later on to this suggestion. Another
point which is worth mentioning is thdfx) and¢(x) represent total angular momenta and
staggered magnetization of the rung taken as a whole. This is why they are 1D densities
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depending only on the single coordinate Given the relations (24) we can now write the
spin ladder Hamiltonian (1) in the variablésp, I, andg, as follows:

dx / / -
Hiadder= f 2{ D Lan(AdApl? +1aly) + 257 " Ju(@' + )% + > Ky y0as
a,b a a,b

428 VDAL L+ 6 + 6+ A+ 1] (29)

To derive (29) we have used (11), (25) and the following formula,
(Al +1)? + 59 + ¢)* = S(S+ 1) (30)

which is a consequence of the relatioﬁé(n) = S(S + 1) (since we are working in the
semiclassical limitS > 1 we shall only keep the highest power $). To decouple the
fields¢ andg, in (29) we have to choose the same valug pfor all the legs. Indeed, upon
this condition the cross terfp’, J,¢'¢,, in (29) vanishes as a consequence of (25). We thus
obtain thaty is a massless field while the fielgg are massive. Let us now concentrate on
the massless field, whose Hamiltonian reads

d'x ! ’
H(massless / = [( > La,,,AuA,,>l2 +25%) " Jup? +28 Y (—D S Ay’ + ¢ l)}.
a,b a a
(31)

This is precisely ther-model Hamiltonian given in (21) with an appropiate identification
of 6, g andv. Let us first consideé whose values are given by

Za(_l)a+lJaAa

0 =8rS . 32
Zb,c Lb,cAbAc ( )

A simplification of (32) is achieved using (27):
0 =8tSY (—D)* ML} (33)

a,b

A convenient way of writing (33) is by means of twg-dimensional vectorsF) and|AF)
defined as follows,

1 1
1 |1 1 -1
|F>= |- |AF (= —— . (34)
Jre | Ve :
1 (—Dmett
whose scalar product is
0 ne . even
(AF|F) = (35)

1/n, ne > odd
Using (34) we write (33) in matrix notation as
0 =8 Sn(AF|JL7YF) (36)
where J is a diagonal matrix whose entries afg. Recalling the well known operator
identity
1 1 1 1

- - _ g~ (37)
A A+ B
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we transform (36) into

0= 27TSI’l[ <AF

) -

Then noticing that the vectdd F) is annihilated byK+ and using equation (35) we arrive
finally at

39
27 S n, . odd (39)

i 0 ny  even
0 =

Taking into account the fact thatis defined modulo 2 we can then write equation (39)
simply as

0= 27TSI’l[. (40)

This result is valid for any value of the coupling constantsaaind J, ,+1 as long as they are
non-vanishing. This confirms the topological nature of the result in total agreement with the
LMSA theorem. Moreover, the derivation of (40) suggests thattierm for spin ladders
is related to the transition amplitude from ferromagnetic to antiferromagnetic configurations
along the rungs (35). A path integral derivation of (40), along the lines of [36], would
probably throw some light on this interpretation.

Next we shall give the expressions of themodel coupling constant and the velocity
v, in terms of the ladder parameters,

1/2
et =523 it “
a,b,c
o 2 Ja 1
(5 oDt @
Zb,c Lb,c (2 Zb,c Ll;c)

whereé,, is equal to 1 (or 0) whenever, is odd or even.

Compairing equations (42) and (15) fer = 1 we find thatv, = v, but forn, > 1 the
two velocities,v, andv, do not coincide (fom, even, one has, = +/2v). We interpret
this fact as a kind of interference effect between the legs of the ladder which makes the
effective spin velocityv, differ from the spin wave velocity. The most interesting case
for practical applications is wheil, = J and J; ,,, = J' Va. We shall give below the
values ofg anduv, in this situation:

nz 1/2
gr=S [; fle, J'1) = 454 (43)
4]
Vg = — . (44)
negf(ne, J'/J)

The function f (n,, J'/J) appearing in these formulae is defined as
[, J')J) = (FIL+ K*/4)7Y F)

1 Cm\ 2 J' am\ "t (45)
:nz[&”JFZW, > (smzm) (1+JCO§2W) }

4 =13,...n,—1
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In the particular cases wherg = 2 and 3 we obtain

1 J 1/2
o= L (14 2)
2J
for n, = 2 Sv2 12 (46)
J/
o =2V257 (14 =
v V2 ( + 2J>
B 2( 143714 )1/2
s\
forn, =3 3 3 1/2 (47)
278 [(A+3777) A7+ 37/7)]
Vg = —(— .
3 1+ 5J//127

We have assumed in (47) that is half-integer. From equation (43) we derive that
g(ng, J'/J) is a monotonically increasing function of the ratié/J, which implies that

the ladder is more disordered in the strong coupling regime than it is for weak coupling. In
fact we get

~ {J//J)l/2 — 00 ne . even
J,/Iijm g=12/8 ne > odd S : half integer (48)
V2/S8 ng > odd S :integer

This equation shows that the difference between even and odd ladders appears not only
in the topological term but also in the behaviour gfas a function of the ratiad’/J in

the strong coupling limit. For, even, the sigma model enters into the strong coupling
regimeg >> 1, which is dominated by the angular momentum téfrin the sigma model
Hamiltonian (21). Let us suppose that we discretize the sigma model Hamiltordas: &t

as in [6,13],

v
H”Z?G

> [glz(n) - ;w(n) co(n+1)+ cte] (49)

with I(n) satisfying the standard angular momenta algebra suchiihaas the spectrum
Il+1),1=0,1,.... I(n) gives the angular momenta of th¢h rung of the ladder. Then

in the strong coupling limit the ground state of (49) is obtained choosing the representation
[ = 0 for eachn. The first excited state hds= 1 at one site and energy,,, which is the
value of the gap in the limig >> 1. In the caser, = 2 we get from equations (46)

vog = J' for J'/J > 1. (50)

The second term in (49) produces shifts in the ground-state energy and also delocalizes
the! = 1 excitation producing a band of states. The gap only vanishgs=al0. These
results agree with the ones obtained using very different techniques, namely numerical
[27, 28], renormalization group [29], mean field [30], finite size [33] and bosonization [35].
However, in order to claim full agreement we have also to analyse what happens with the
other massive modes that we discarded in the mapping of the ladder Hamiltonian into the
sigma model Hamiltonian. If the mass which is generated dynamically by non-perturbative
effects for the fieldy is smaller than the gap associated with the massive mpdéeen we
expect that the map must be essentially correct, except for a finite renormalization of the
coupling constang and the spin velocity,. These issues will be considered elsewhere.

For the odd ladders the asymptotic valuegols in agreement with (22), in the sense
that the odd ladders with spi%l-can be thought of as single chains with a séit&nd an
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effective coupling constanfes. Indeed, forS = % we get from (48) thag = 4 which is
the same value we obtain in (22) for the single s@inhain.
Let us consider now the weak coupling limit/J <« 1. From (43) and (45) we get

\/é/(Sng) ng . even orn, : odd S : integer

lim g= 51
1o T ) 2 / (s\/@) ne - odd S : half integer D

which implies thatg depends essentially on the combinati®wy, as we anticipated in the
discussion of equation (28). The isotropic cage= J’, is in fact closer to the weak
coupling values (51) than to the strong coupling ones (48). Thusi/ers> 1 the value

of g will be small and we may use the formula €x®r/g) to estimate the value of the
energy or mass scales of the system. This implies in particular that the mass gap for the
even ladders with, large will decrease as egpcren,). This agrees, at least qualitatively,

with the numerical results which give a spin gap,i, for the isotropic case equal to5D4/

for ny = 2 and Agpin ~ 0.2J for n, = 4. Thus, in the limitn, — oo, the gap of the even
ladders should vanish exponentially. As the odd ladders are already gapless for any number
of legs, one reaches in the limit the same result for both even and odd chains. However,
one must be careful in this limit since, as we mentioned above, the massive modes that
we discarded in our mapping to a 1D sigma model are becoming more important as we
increase the number of legs. A more careful analysis of these questions is needed.

4. Final considerations

The application of the sigma model techniques to spin ladders has allowed us not only
to confirm the topological origin of the qualitatively different behaviour of even and odd
ladders, but also to get some hints about the dependence of the physical quantities on the
values of the coupling constanfsandJ’. Much work remains to be done in this direction,
but we believe that the sigma model offers an unified, economic and consistent approach
to spin ladders. The connection we have established in this paper allows us, in principle,
to apply the knowledge accumulated in the past in the study of the sigma model to the
understanding of spin ladders.

An interesting ‘recent’ result concerning the sigma modelg at = is the proof of
its exact integrability [16, 17], which is the parallel of the well known integrability of the
sigma model ab = 0 [8]. The proof of integrability is performed in the framework of
the factorized scattering theory. Fér= 0 the S-matrix is formulated for a0 (3)-triplet of
massive particles, while fo# = & there are twoO (2)-doublets of left and right moving
massless particles, with three types of scatterings: left—left, right—right and left—right. Using
the powerful techniques of the thermodynamic Bethe ansatz one can compute finite size
effects of various observables. In this way one can prove that the RG flozvforr goes
from the UV asymptotically free model with= 2 to the IR masslesSU (2);WZW model
with ¢ = 1, as we indicated in the introduction. The results one gets using these exact
techniques agree at the perturbative level with the ones obtained from the perturbation of
the WZW model by the marginal irrelevant operathrJ [19]. In this way one explains
the logarithmic departure from the scale invariant results which can then be compared with
experimental or numerical results [21]. These logarithmic corrections all depend on a mass
scale A, which is generated dynamically in the sigma model and which for small values
of g is given essentially by /& exp(—2r/g), with a the lattice spacing. In the factorized
S-matrix theory the parametek appears explicitly in the expression of the energy and
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momentum of the particles. An important problem is to derive the relation betwesmd

the microscopic parameters of the model appearing in the Hamiltonian, namelyand

J’ [41]. If the Hamiltonian happens to be integrable then one should be able to find an
exact expression foA, but in general this will not be possible and so one has to use some
approximation method. Numerical computations of thermodynamics quantities of the spin
ladders and their comparison with the theoretical predictions may also be very useful in
establishing this connection [42].
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